13.某地區(qū)2012年至2016年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份20122013201420152016
年份代號(hào)t12345
人均純收入y567810
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2016年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)農(nóng)村居民家庭人均純收入在哪一年約為10.8千元.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.

分析 (1)根據(jù)數(shù)據(jù)求出樣本平均數(shù)以及對(duì)應(yīng)的系數(shù)即可求y關(guān)于t的線性回歸方程;
(2)根據(jù)條件進(jìn)行估計(jì)預(yù)測(cè)即可得到結(jié)論.

解答 解:(1)由所給數(shù)據(jù)計(jì)算得
$\overline{x}$=$\frac{1}{5}$×(1+2+3+4+5)=3,-----------------------(1分)
$\overline{y}$=$\frac{1}{5}$×(5+6+7+8+10)=7.2,-----------------(2分)
$\sum_{i=1}^5{{{({t_i}-\overline t)}^2}}$=4+1+0+1+4=10,--------------------(3分)
$\sum_{i=1}^5{({t_i}-\overline t)({y_i}-\overline y)}$=(-2)×(-2.2)+(-1)×(-1.2)+0×(-0.2)+1×0.8+2×2.8=12,-----------------(4分)
$\stackrel{∧}$=$\frac{{\sum_{i=1}^n{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({t_i}-\overline t)}^2}}}}$=$\frac{12}{10}$=1.2,--------------------(5分)
$\stackrel{∧}{a}$=7.2-1.2×3=3.6,--------------------(6分)
所求回歸方程為y=1.2t+3.6.---------------------(7分)
(2)由(1)知,$\stackrel{∧}$=1.2>0,故2012年至2016年該地區(qū)農(nóng)村居民家庭人均純收入逐年增加,平均每年增加1.2千元.
令1.2t+3.6=10.8,解得t=6-------(9分)
故預(yù)測(cè)該地區(qū)2017年農(nóng)村居民家庭人均純收入約為10.8千元.---------------------(10分)

點(diǎn)評(píng) 本題主要考查線性回歸方程的求解以及應(yīng)用,根據(jù)數(shù)據(jù)求出相應(yīng)的系數(shù)是解決本題的關(guān)鍵.考查學(xué)生的運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a=${∫}_{0}^{π}$(sinx+cosx)dx,且二項(xiàng)式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n的所有二項(xiàng)式系數(shù)之和為64,則其展開式中含x2項(xiàng)的系數(shù)是( 。
A.-192B.192C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知曲線C的極坐標(biāo)方程為ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$,則C上的點(diǎn)到直線x-2y-4$\sqrt{2}$=0的距離的最小值為$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示是一個(gè)幾何體的三視圖,則這個(gè)幾何體的體積為$\frac{57}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何函數(shù)的三視圖如圖所示,則該幾何的體積為( 。
A.8+16πB.8+8πC.16+16πD.16+8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C:(x+2)2+y2=5,直線l:mx-y+1+2m=0,m∈R.
(1)求證:對(duì)m∈R,直線l與圓C總有兩個(gè)不同的交點(diǎn)A、B;
(2)求弦AB的中點(diǎn)M的軌跡方程,并說明其軌跡是什么曲線;
(3)是否存在實(shí)數(shù)m,使得圓C上有四點(diǎn)到直線l的距離為$\frac{{4\sqrt{5}}}{5}$?若存在,求出m的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)為可導(dǎo)函數(shù)且滿足$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1-△x)}{△x}$=3,則函數(shù)y=f(x)圖象上在點(diǎn)(1,f(1)處的切線的傾斜角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)y=f(x)的圖象上存在兩個(gè)點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)[A,B]為y=f(x)的“友情點(diǎn)對(duì)”,點(diǎn)對(duì)[A,B]與[B,A]可看作同一個(gè)“友情點(diǎn)對(duì)”,若函數(shù)f(x)=$\left\{\begin{array}{l}2,x<0\\-{x^3}+6{x^2}-9x+a,x≥0\end{array}\right.$恰好有兩個(gè)“友情點(diǎn)對(duì)”,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列矩陣的逆矩陣.
(1)$(\begin{array}{l}{1}&{0}&{0}&{0}\\{2}&{1}&{0}&{0}\\{3}&{2}&{1}&{0}\\{4}&{3}&{2}&{1}\end{array})$,
(2)$(\begin{array}{l}{3}&{-3}&{4}\\{2}&{-3}&{4}\\{0}&{-1}&{1}\end{array})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案