8.“(a-1)(4a-2a+1)>0”是“定積分$\int_0^{\frac{π}{6}}{acosxdx>1}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)不等式的性質(zhì)結(jié)合積分的公式,利用充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:∵${4^a}-{2^a}+1={({{2^a}-\frac{1}{2}})^2}+\frac{3}{4}>0$,
∴(a-1)(4a-2a+1)>0?a>1.
定積分${∫}_{0}^{\frac{π}{6}}$acosxdx=asinx|${\;}_{0}^{\frac{π}{6}}$=asin$\frac{π}{6}$-asin0=$\frac{1}{2}$a>1,
∴a>2.
則“(a-1)(4a-2a+1)>0”是“定積分$\int_0^{\frac{π}{6}}{acosxdx>1}$”的必要不充分條件,
故選:B

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,結(jié)合不等式的性質(zhì)以及積分的公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知扇形的弧長為6,圓心角弧度數(shù)為3,則其面積為( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C:x2+y2-2x-4y+m=0.
(I)求m的取值范圍;
(II)當(dāng)m=-11時(shí),若圓C與直線x+ay-4=0交于M,N兩點(diǎn),且∠MCN=120°,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等差數(shù)列{an}中,若a2+a8=8,則數(shù)列{an}的前9項(xiàng)和S9=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=x+xlnx,g(x)=x-lnx-2,
(1)若x0是g(x)在(1,+∞)的一個(gè)零點(diǎn),且x0∈(n,n+1),n∈Z,求n;
(2)若k∈Z,k<$\frac{f(x)}{x-1}$對(duì)任意x>1恒成立,求k的最大值;
(3)設(shè)F(x)=2g(x)+x2+(-a-2)x+4,其導(dǎo)函數(shù)為F′(x),若F(x)的圖象交x軸于點(diǎn)C(x1,0),D(x2,0)兩點(diǎn),且線段CD的中點(diǎn)為N(s,0),試問s是否為F′(x)=0的根?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知復(fù)數(shù)z=3+4i對(duì)應(yīng)點(diǎn)為A,且z恰好為二次方程x2+px+q=0的一個(gè)根.
(1)求實(shí)數(shù)p,q的值;
(2)若點(diǎn)O為原點(diǎn),求與$\overrightarrow{OA}$同向的單位向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)的是(  )
A.y=$\frac{2}{x}$B.y=3-sinxC.y=-tanxD.y=-2x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線2x+3y-6=0分別交x,y軸于A,B兩點(diǎn),點(diǎn)P在直線y=-x-1上,則|PA|+|PB|的最小值是$\sqrt{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在數(shù)軸上,設(shè)點(diǎn)x在|x|≤3中按均勻分布出現(xiàn),記點(diǎn)a∈[-1,2]為事件A,則P(A)等于(  )
A.1B.$\frac{1}{2}$C.0D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案