17.函數(shù)f(x)=x-$\frac{1}{x}$的圖象關(guān)于( 。
A.y軸對(duì)稱B.直線y=x對(duì)稱C.坐標(biāo)原點(diǎn)對(duì)稱D.直線y=-x對(duì)稱

分析 根據(jù)函數(shù)的解析式判斷函數(shù)f(x)為奇函數(shù),可得它的圖象關(guān)于原點(diǎn)對(duì)稱,從而得出結(jié)論.

解答 解:由于函數(shù)f(x)=x-$\frac{1}{x}$的定義域?yàn)閧x|x≠0},關(guān)于原點(diǎn)對(duì)稱,再根據(jù)f(-x)=-x+$\frac{1}{x}$=-f(x),
可得函數(shù)f(x)為奇函數(shù),故它的圖象關(guān)于原點(diǎn)對(duì)稱,
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性的判斷方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x0∈R,x0-2>0,命題q:?x∈R,$\sqrt{x}$<x,則下列說法中正確的是( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(¬q)是真命題D.命題p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:函數(shù)f(x)=$\frac{2x+3}{x}$圖象的對(duì)稱中心為(0,3);命題q:若單位向量$\overrightarrow{a}$、$\overrightarrow$滿足|2$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$+2$\overrightarrow$|,則2$\overrightarrow{a}$⊥3$\overrightarrow$,則下列命題是真命題的為(  )
A.(¬p)∧qB.p∧qC.p∨(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后關(guān)于原點(diǎn)對(duì)稱,則φ等于( 。
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x+a)lnx,g(x)=$\frac{x^2}{e^x}$.已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x-y=0平行.
(1)求a的值;
(2)證明:方程f(x)=g(x)在(1,2)內(nèi)有且只有一個(gè)實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}滿足:a1=$\frac{4}{3}$,且an+1=$\frac{4(n+1){a}_{n}}{3{a}_{n}+n}$,(n∈N+),則$\frac{1}{{a}_{1}}$+$\frac{2}{{a}_{2}}$+$\frac{3}{{a}_{3}}$+…+$\frac{2016}{{a}_{2016}}$=$2015\frac{2}{3}+\frac{1}{3•{4}^{2016}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,以線段F1F2為直徑的圓與雙曲線漸近線一個(gè)交點(diǎn)為(4,3),則該雙曲線的實(shí)軸長為(  )
A.6B.8C.4D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(ax)-$\frac{x-a}{x}$(a>0)
(Ⅰ)若函數(shù)f(x)的最小值為2,求a的值;
(Ⅱ)當(dāng)a=1時(shí),是否存在過點(diǎn)(1,-1)的直線與函數(shù)y=f(x)的圖象相切?若存在,有多少條?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是等差數(shù)列,a1+a2+a3=6,a5=5.
( I)求數(shù)列{an}的通項(xiàng)公式;
( II)若${b_n}={a_n}•{2^{a_n}},(n∈N*)$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案