分析 (1)求導(dǎo)函數(shù)f′(x),解不等式f′(x)>0得出增區(qū)間,解不等式f′(x)<0得出減區(qū)間;
(2)求F′(x),討論F′(x)=0的解的情況及F(x)的單調(diào)性得出結(jié)論.
解答 解:(1)函數(shù)的定義域?yàn)椋?,+∞)
求導(dǎo)函數(shù),可得f′(x)=1+lnx
令f′(x)=1+lnx=0,可得x=$\frac{1}{e}$,
∴0<x<$\frac{1}{e}$時(shí),f′(x)<0,x>$\frac{1}{e}$時(shí),f′(x)>0
∴函數(shù)f(x)在(0,$\frac{1}{e}$)上單調(diào)遞減,在($\frac{1}{e}$,+∞)單調(diào)遞增,
(2)∴F(x)=ax2+f′(x)(x>0),
∴F′(x)=2ax+$\frac{1}{x}$=$\frac{2{ax}^{2}+1}{x}$(x>0).
當(dāng)a≥0時(shí),F(xiàn)′(x)>0恒成立,∴F(x)在(0,+∞)上為增函數(shù),
∴F(x)在(0,+∞)上無(wú)極值.
當(dāng)a<0時(shí),令F′(x)=0得x=$\sqrt{-\frac{1}{2a}}$或x=-$\sqrt{-\frac{1}{2a}}$(舍).
∴當(dāng)0<x<$\sqrt{-\frac{1}{2a}}$時(shí),F(xiàn)′(x)>0,當(dāng)x>$\sqrt{-\frac{1}{2a}}$時(shí),F(xiàn)′(x)<0,
∴F(x)在(0,$\sqrt{-\frac{1}{2a}}$)上單調(diào)遞增,在($\sqrt{-\frac{1}{2a}}$,+∞)上單調(diào)遞減,
∴當(dāng)x=$\sqrt{-\frac{1}{2a}}$時(shí),F(xiàn)(x)取得極大值F($\sqrt{-\frac{1}{2a}}$)=$\frac{1}{2}$+ln $\sqrt{-\frac{1}{2a}}$,無(wú)極小值,
綜上:當(dāng)a≥0時(shí),F(xiàn)(x)無(wú)極值,
當(dāng)a<0時(shí),F(xiàn)(x)有極大值$\frac{1}{2}$+ln $\sqrt{-\frac{1}{2a}}$,無(wú)極小值.
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的導(dǎo)數(shù)的最值的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,分類討論思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ﹁p:?x∈R,sin $x≤\frac{{\sqrt{3}}}{2}$ | B. | ﹁p:?x∈R,$sinx<\frac{{\sqrt{3}}}{2}$ | ||
C. | ﹁p:?x∈R | D. | ﹁p:?x∈R,$sinx≤\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (3,+∞) | D. | [2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{16}$ | B. | $\frac{9}{32}$ | C. | $\frac{9}{64}$ | D. | $-\frac{9}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com