6.已知f(sinx)=cos2x-1,則f(cos15°)=(  )
A.$-\frac{1}{2}$B.$-\frac{3}{2}$C.$-\frac{{\sqrt{3}}}{2}-1$D.$\frac{{\sqrt{3}}}{2}-1$

分析 由已知得f(cos15°)=f(sin75°)=cos150°-1,由此能求出結(jié)果.

解答 解:∵f(sinx)=cos2x-1,
∴f(cos15°)=f(sin75°)
=cos150°-1=-cos30°-1=-$\frac{\sqrt{3}}{2}$-1.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=sin2x+sin2(x+α)+sin2(x+β),其中α,β是適合0≤α≤β≤π的常數(shù)
(1)若$α=\frac{π}{4},β=\frac{3π}{4}$,求函數(shù)f(x)的最小值;
(2)f(x)是否可能為常值函數(shù)?若可能,求出f(x)為常值函數(shù)時(shí),α,β的值,如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,$\overrightarrow{m}$=(b,cosB),$\overrightarrow{n}$=(2a-c,cosC)且$\overrightarrow{m}$∥$\overrightarrow{n}$,求
(1)角B的大。
(2)sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下面使用類比推理正確的是( 。
A.直線a,b,c,若a∥b,b∥c,則a∥c.類推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$
B.同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b.類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b
C.若a,b∈R,則a-b>0⇒a>b.類推出:若a,b∈C,則a-b>0⇒a>b
D.由向量加法的幾何意義,可以類比得到復(fù)數(shù)加法的幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ax+elnx與g(x)=$\frac{{x}^{2}}{x-elnx}$的圖象有三個(gè)不同的公共點(diǎn),其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.a<-eB.a>1C.a>eD.a<-3或a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC是等腰三角形,∠ABC=120°,以A、B為焦點(diǎn)且過點(diǎn)C的雙曲線離心率為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.鄂西北某濕地公園里,A,B兩地相距2km,現(xiàn)在準(zhǔn)備在濕地公園里圍成一片以AB為一條對(duì)角線的平行四邊形區(qū)域,建立生態(tài)觀光園.按照規(guī)劃,圍墻總長度為8km.求:
(1)平行四邊形另兩個(gè)頂點(diǎn)C,D所在的軌跡方程;
(2)觀光園的最大面積能達(dá)到多少?
(3)該濕地公園里有一條直線型步行小徑剛好過點(diǎn)A,且與AB成45°角,現(xiàn)要對(duì)步行小徑進(jìn)行整修改造,但考慮到今后濕地公園里的步行小徑要重新設(shè)計(jì)改造,因此該步行小徑可能被觀光園圍住的部分暫不整修,那么暫不整修的部分有多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)全集U=R,集合$A=\left\{{x|y={{log}_2}x}\right\},B=\left\{{x|{x^2}-1<0}\right\}$,則(∁UA)∩B={x|-1<x≤0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果方程x2-4ax+3a2=0的一根小于1,另一根大于1,那么實(shí)數(shù)a的取值范圍是(  )
A.$\frac{1}{3}<a<1$B.a>1C.$a<\frac{1}{3}$D.a=1

查看答案和解析>>

同步練習(xí)冊(cè)答案