2.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,∠DAB=90°,PA=AB=BC=3,AD=1.
( I)設(shè)點(diǎn)E在線段PC上,若$\frac{PE}{EC}=\frac{1}{2}$,求證:DE∥平面PAB;
( II)求證:平面PBC⊥平面PAB.

分析 (Ⅰ)在PB上取一點(diǎn)F,滿足$\frac{PF}{FB}=\frac{1}{2}$,連接EF,AF,可得EF∥BC,且$EF=\frac{1}{3}BC$,又AD∥BC,BC=3,AD=1,可得四邊形ADEF為平行四邊形,得DE∥AF,由線面平行的判定可得DE∥平面PAB;
(Ⅱ)由AD∥BC,∠DAB=90°,可得BC⊥AB,再由PA⊥底面ABCD,得BC⊥PA,由線面垂直的判定可得BC⊥平面PAB,進(jìn)一步可得平面PBC⊥平面PAB.

解答 證明:(Ⅰ)∵$\frac{PE}{EC}=\frac{1}{2}$,∴在PB上取一點(diǎn)F,滿足$\frac{PF}{FB}=\frac{1}{2}$,并連接EF,AF,
∵$\frac{PE}{EC}=\frac{PF}{FB}=\frac{1}{2}$,∴EF∥BC,且$EF=\frac{1}{3}BC$,
又AD∥BC,BC=3,AD=1,
∴EF∥AD,且EF=AD=1,
∴四邊形ADEF為平行四邊形,得DE∥AF,
又DE?面PAB,AF?面PAB,
∴DE∥平面PAB;
(Ⅱ)∵AD∥BC,∠DAB=90°,∴∠ABC=90°,即BC⊥AB,
又PA⊥底面ABCD,BC?底面ABCD,∴BC⊥PA,
又AB,PA是平面PAB上兩相交直線,
∴BC⊥平面PAB,
又BC?平面PBC,∴平面PBC⊥平面PAB.

點(diǎn)評 本題考查直線與平面平行、平面與平面垂直的判定,考查空間想象能力和思維能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線y=x-1與圓$x_{\;}^2+y_{\;}^2-2x+\frac{3}{4}=0$及拋物線$y_{\;}^2=4x$依次交于A,B,C,D四點(diǎn),則|AB|+|CD|=( 。
A.6B.8C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知x,y為正實(shí)數(shù),則$\frac{4x}{x+3y}+\frac{3y}{x}$的最小值為( 。
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(Ⅰ)解方程f(x)-4=0;
(Ⅱ)若關(guān)于x的不等式f(x)≤a解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)$f(x)=2sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{π}{12}$個單位,再向上平移1個單位,得到g(x)的圖象.若g(x1)g(x2)=9,且x1,x2∈[-2π,2π],則2x1-x2的最大值為( 。
A.$\frac{49π}{12}$B.$\frac{35π}{6}$C.$\frac{25π}{6}$D.$\frac{17π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列命題中       
①若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
②若f′(x0)=-3,則$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-3h)}{h}$=-12
③若z∈C(C為復(fù)數(shù)集),且|z+2-2i|=1,則|z-2-2i|的最小值是3;
④若函數(shù)f(x)=-x2+ax-lnx既有極大值又有極小值,則a>2$\sqrt{2}$或a<-2$\sqrt{2}$    
 正確的命題有②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=$\frac{b\sqrt{{a}^{2}-{x}^{2}}}{a}$(a>b>0)的圖象是曲線C.
(1)在如圖的坐標(biāo)系中分別做出曲線C的示意圖,并分別標(biāo)出曲線C與x軸的左、右交點(diǎn)A1,A2
(2)設(shè)P是曲線C上位于第一象限的任意一點(diǎn),過A2作A2R⊥A1P于R,設(shè)A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin($\frac{5π}{6}$-2x)-2sin(x-$\frac{π}{4}$)cos(x+$\frac{3π}{4}$).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若x∈[$\frac{π}{12}$,$\frac{π}{3}$],且F(x)=-4λf(x)-cos(4x-$\frac{π}{3}$)的最小值是-$\frac{3}{2}$,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=log2(x-x2)的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1)B.(-1,0)C.(1,+∞)D.(-∞,0)

查看答案和解析>>

同步練習(xí)冊答案