分析 由∠ADE=60°,可證得△ABD∽△DCE;可用等邊三角形的邊長表示出DC的長,進而根據(jù)相似三角形的對應邊成比例,求得△ABC的邊長.
解答 解:∵△ABC是等邊三角形,
∴∠B=∠C=60°,AB=BC;
∴CD=BC-BD=AB-3;
∴∠BAD+∠ADB=120°,
∵∠ADE=60°,
∴∠ADB+∠EDC=120°,
∴∠DAB=∠EDC,
又∵∠B=∠C=60°,
∴△ABD∽△DCE;
∴$\frac{AB}{CD}=\frac{BD}{CE}$,
即 $\frac{AB}{AB-3}=\frac{3}{2}$,
解得AB=9.
故答案為:9.
點評 此題主要考查了等邊三角形的性質和相似三角形的判定和性質,能夠證得△ABD∽△DCE是解答此題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (2,-3) | B. | (-2,3) | C. | (2,3) | D. | (-2,-3) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com