分析 利用導數(shù)公式求解得出f(x)=x4-2x2+m,-5=0+0+m,
m=-5,f(x)=x4-2x2-5,根據(jù)導數(shù)判斷單調性,極值的規(guī)律求解即可.
解答 解:∵函數(shù)f(x)的導數(shù)為f′(x)=4x3-4x,且圖象過定點(0,-5),
∴f(x)=x4-2x2+m,-5=0+0+m,
m=-5,
f(x)=x4-2x2-5,
∴f′(x)=4x3-4x=0,x=±1,x=0,
f′(x)=4x3-4x>0,-1<x<0,x>1,
f′(x)=4x3-4x<0,0<x<1,x<-1,
即f(x)的單調遞增區(qū)間 (-1,0),(1,+∞)
單調遞減區(qū)間 (-∞,-1),(0,1)
∴極大值f(0)=-5,
極小值為:f(-1)=-6,f(1)=-6.
故答案為;極大值為-5 極小值為-6
點評 本題簡單的考查了導數(shù)在運用求函數(shù)極值問題中的運用,屬于中檔題,關鍵根據(jù)導數(shù)推出原函數(shù)即可.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最大值,無最小值 | B. | 無最大值,有最小值 | ||
C. | 有最大值且有最小值 | D. | 無最大值且無最小值 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ξ=4 | B. | ξ=5 | C. | ξ=6 | D. | ξ≤5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com