19.已知橢圓C:$\frac{x^2}{3}+{y^2}$=1,斜率為1的直線l與橢圓C交于A,B兩點,且|AB|=$\frac{{3\sqrt{2}}}{2}$,則直線l的方程為y=x±1.

分析 設出直線方程y=x+m,代入x2+3y2=3,結合題設條件利用橢圓的弦長公式能求出m,得到直線方程.

解答 解:橢圓:$\frac{x^2}{3}+{y^2}$=1,即:x2+3y2=3
l:y=x+m,代入x2+3y2=3,
整理得4x2+6mx+3m2-3=0,
設A(x1,y1),B(x2,y2),
則x1+x2=-$\frac{6m}{4}$,x1x2=$\frac{3{m}^{2}-3}{4}$,
|AB|=$\sqrt{1+{1}^{2}}$•|x1-x2|
=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}×\sqrt{(-\frac{6m}{4})^{2}-4×\frac{3{m}^{2}-3}{4}}$=$\frac{{3\sqrt{2}}}{2}$,.
解得:m=±1.
直線l:y=x±1.
故答案為:y=x±1.

點評 本題考查橢圓弦長的求法,解題時要注意弦長公式,考查計算能力以及分析問題解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知直角坐標系中x軸正方向是極坐標系的極軸,坐標原點為極點,若曲線C1:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ為參數(shù)),曲線C2:ρ=sinα.
(1)求曲線C1的普通方程和曲線C2的直角坐標方程.
(2)已知直線l:x+y-8=0,求曲線C1上的點到直線l的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知直線l的參數(shù)方程為:$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-1+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$
(1)若P(1,-1),l上一點Q對應的參數(shù)值t=-2,求Q的坐標和|PQ|的值;
(2)l與圓x2+y2=4交于M、N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如果命題p(n)對n=k成立,則它對n=k+2也成立,若p(n)對n=2成立,則下列結論正確的是(  )
A.p(n)對所有正整數(shù)n都成立B.p(n)對所有正偶數(shù)n都成立
C.p(n)對大于或等于2的正整數(shù)n都成立D.p(n)對所有自然數(shù)都成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點,A是其上頂點,且△AF1F2是等腰直角三角形,延長AF2與橢圓C交于另一點B,若△AF1B的面積是8,則橢圓C的方程是$\frac{x^2}{{{{12}^{\;}}}}+\frac{y^2}{6}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并比較3n與π3的大;
(2)若正實數(shù)a滿足對任意x∈(0,+∞)都有ax2f(x)+1≥0,求正實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某3D打印機,其打出的產(chǎn)品質(zhì)量按照百分制衡量,若得分不低于85分則為合格品,低于85分則為不合格品,商家用該打印機隨機打印了15件產(chǎn)品,得分情況如圖;
(1)寫出該組數(shù)據(jù)的中位數(shù)和眾數(shù),并估計該打印機打出的產(chǎn)品為合格品的概率;
(2)若打印一件合格品可獲利54元,打印一件不合格品則虧損18元,記X為打印3件產(chǎn)品商家所獲得的利潤,在(1)的前提下,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知{an},{bn}為兩非零有理數(shù)列(即對任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無理數(shù)列(即對任意的i∈N*,di為無理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對任意的n∈N*恒成立,試求{dn}的通項公式.
(2)若{dn3}為有理數(shù)列,試證明:對任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要條件為$\left\{{\begin{array}{l}{{a_n}=\frac{1}{{1+{d_n}^6}}}\\{{b_n}=\frac{{{d_n}^3}}{{1+{d_n}^6}}}\end{array}}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2}+{{(-1)}^n}θ)}}$,試計算bn

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆安徽合肥一中高三上學期月考一數(shù)學(理)試卷(解析版) 題型:解答題

已知,若的充分而不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案