5.拋物線x=-$\frac{1}{4}$y2的焦點(diǎn)坐標(biāo)是( 。
A.(-1,0)B.(0,-1)C.(-$\frac{1}{16}$,0)D.(0,-$\frac{1}{16}$)

分析 化簡(jiǎn)拋物線方程為標(biāo)準(zhǔn)方程,然后求解即可.

解答 解:拋物線x=-$\frac{1}{4}$y2的標(biāo)準(zhǔn)方程為:y2=-4x,的焦點(diǎn)在x負(fù)半軸的拋物線,焦點(diǎn)坐標(biāo)(-1,0).
故選:A.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):
x681012
y2356
(1)請(qǐng)?jiān)趫D中畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.
相關(guān)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某校舉辦“校園文化藝術(shù)節(jié)”,其中一項(xiàng)猜獎(jiǎng)活動(dòng),參與者需先后回答兩道選擇題,問(wèn)題A有三個(gè)選項(xiàng),問(wèn)題B有四個(gè)選項(xiàng),但都只有一個(gè)選項(xiàng)是正確的,正確回答問(wèn)題A可獲獎(jiǎng)金a元,正確回答問(wèn)題B可獲獎(jiǎng)金b元,活動(dòng)規(guī)定:
①參與者可任意選擇回答問(wèn)題的順序;
②如果第一個(gè)問(wèn)題回答錯(cuò)誤,該參與者猜獎(jiǎng)活動(dòng)終止,不獲得任何獎(jiǎng)金;
③如果第一個(gè)問(wèn)題回答正確,可以選擇繼續(xù)答題,若第二題也答對(duì),則該參與者獲得兩道題的獎(jiǎng)金,若第二題答錯(cuò),則該參與者只能得到第一個(gè)問(wèn)題獎(jiǎng)金的一半;也可以選擇放棄答題,獲得第一題的獎(jiǎng)金,猜獎(jiǎng)活動(dòng)終止.假設(shè)一個(gè)參與者在回答問(wèn)題前,對(duì)這兩個(gè)問(wèn)題都很陌生,且在第一個(gè)問(wèn)題回答正確后,選擇繼續(xù)答題和放棄答題的可能性相等.
(Ⅰ)如果該參與者先回答問(wèn)題A,求其恰好獲得獎(jiǎng)金a+b元的概率;
(Ⅱ)試確定哪種回答問(wèn)題的順序能使該參與者獲獎(jiǎng)金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-1,a∈R.
(1)若曲線y=f(x)在點(diǎn)P(1,y0)處的切線平行于直線y=-x+1,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,使函數(shù)y=f(x)在x∈(0,e]上有最小值1?若存在,求出a的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=3,E為B1C1的中點(diǎn),F(xiàn)在CC1上,且C1F=1,G在AA1上,且AG=2.
(1)證明:DG∥平面A1EF;
(2)設(shè)平面A1EF與DD1交于點(diǎn)H,求線段DH的長(zhǎng),并求出直線BH與截面A1EFH所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若函數(shù)f(x)=x2+ax+2是R上的偶函數(shù),其中常數(shù)a∈R,則函數(shù)y=$\frac{f(x)}{x}$(x>0)的最小值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,直線l:$\left\{{\begin{array}{l}{x=m+t}\\{y=2+\sqrt{3}t}\end{array}(t為參數(shù))}\right.$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的方程是$ρ=\frac{8cosθ}{1-cos2θ}$;
(Ⅰ)若m=0,在曲線C上確定一點(diǎn)M,使得它到直線l的距離最小,并求出最小值;
(Ⅱ)設(shè)P(m,2)且m>1,直線l與曲線C相交于A,B兩點(diǎn),$\frac{{|{|{PA}|-|{PB}|}|}}{{|{PA}|•|{PB}|}}$=$\frac{{\sqrt{3}-1}}{2}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.拋物線C:y2=2px(p>0),過(guò)點(diǎn)F(1,0)的直線l與C交于M,N兩點(diǎn),且△MON(O為坐標(biāo)原點(diǎn))面積的最小值為2
(1)求拋物線C的方程;
(2)直線l上的點(diǎn)Q滿足$\frac{2}{{|FQ{|^2}}}=\frac{1}{{|FM{|^2}}}+\frac{1}{{|FN{|^2}}}$,求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.四棱錐P-ABCD的底面是邊長(zhǎng)為2$\sqrt{2}$的正方形,高為1.其外接球半徑為2$\sqrt{2}$,則正方形ABCD的中心與點(diǎn)P之間的距離為(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{2}$或1D.2$\sqrt{2}$或$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案