分析 (1)利用f(-x)=-f(x),建立方程求常數(shù)m的值;
(2)作出直線y=k與函數(shù)y=|3x-1|的圖象,利用圖象,分類討論研究方程|3x-1|=k解得情況.
解答 解:(1)∵f(x)=$\frac{2}{3x-1}$+m是奇函數(shù),
∴f(-x)=-f(x),
∴$\frac{2}{3-x-1}$+m=-$\frac{2}{3x-1}$-m.
∴$\frac{2•3x}{1-3x}$+m=$\frac{2}{1-3x}$-m,
∴$\frac{2?3x-1?}{1-3x}$+2m=0.
∴-2+2m=0,∴m=1.(4分)
(2)作出直線y=k與函數(shù)y=|3x-1|的圖象,如圖. (8分)
①當k<0時,直線y=k與函數(shù)y=|3x-1|的圖象無交點,即方程無解;
②當k=0或k≥1時,直線y=k與函數(shù)y=|3x-1|的圖象有唯一的交點,所以方程有一解;
③當0<k<1時,直線y=k與函數(shù)y=|3x-1|的圖象有兩個不同的交點,所以方程有兩解. (12分)
點評 本題考查函數(shù)的奇偶性,考查函數(shù)的圖象,考查分類討論的數(shù)學思想,正確運用函數(shù)的圖象是關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=4-x | B. | f(x)=x2-2x | C. | f(x)=-$\frac{2}{x+1}$ | D. | f(x)=-|x| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com