分析 先畫出圖象,根據(jù)梯形的面積公式得到S梯形=(π-x1)sinx1,x1∈(0,$\frac{π}{2}$),再構(gòu)造函數(shù)y=(π-x)sinx,求導(dǎo),得到函數(shù)的最值,問題得以解決.
解答 解:∵x∈[0,π],
∴y1=y2>0,
∴S梯形=$\frac{1}{2}$(AB+OC)•y1=$\frac{1}{2}$[(x2-x1)+π]•sinx1,
∵A與B關(guān)于x=$\frac{π}{2}$對稱,
∴$\frac{1}{2}$(x2-x1)=$\frac{π}{2}$,
∴x2=π-x1,
∴S梯形=(π-x1)sinx1,x1∈(0,$\frac{π}{2}$),
令y=(π-x)sinx,
∴y′=-sinx+(π-x)cosx=0,
∴tanx=π-x,
∴tanx+x=π,
∴y的最大值處有tanx+x=π,
∴x1+tanx1=π,
故答案為:π
點評 本題考查了三角函數(shù)的圖象和性質(zhì)以及梯形的面積的公式,以及導(dǎo)數(shù)和函數(shù)極值的關(guān)系,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | a | C. | 1 | D. | 1-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5$\sqrt{21}$m | B. | 10m | C. | $\frac{4900}{13}$m | D. | 35m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$α+β=\frac{π}{2}$ | B. | 3$α+β=\frac{π}{2}$ | C. | 2$α-β=\frac{π}{2}$ | D. | 3$α-β=\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com