9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,過右焦點F且斜率為k(k>0)的直線與橢圓C相交于A,B兩點,若$\overrightarrow{AF}=3\overrightarrow{FB}$,則k=1.

分析 由$\overrightarrow{AF}=3\overrightarrow{FB}$,y1=-3y2,e=$\frac{{\sqrt{2}}}{2}$,設a=2t,c=$\sqrt{2}$t,b=$\sqrt{2}$t,(t>0),則直線方程為:x=$\frac{1}{k}$y+$\sqrt{2}$t,代入橢圓方程,由韋達定理可知y1+y2=$\frac{2\sqrt{2}kt}{1+2{k}^{2}}$,y1y2═-$\frac{2{k}^{2}{t}^{2}}{1+2{k}^{2}}$,代入,即可求得k的值.

解答 解:右焦點F且斜率為k(k>0)的直線與橢圓C相交于A,B兩點,A(x1,y1),B(x2,y2),
∵$\overrightarrow{AF}=3\overrightarrow{FB}$,
∴y1=-3y2,
∵e=$\frac{{\sqrt{2}}}{2}$,設a=2t,c=$\sqrt{2}$t,b=$\sqrt{2}$t,(t>0),
∴$\frac{{x}^{2}}{4{t}^{2}}+\frac{{y}^{2}}{2{t}^{2}}=1$①,
設直線AB方程為x=$\frac{1}{k}$y+$\sqrt{2}$t,
代入①中消去x,可得($\frac{1}{{k}^{2}}$+2)y2+$\frac{2\sqrt{2}ty}{k}$-2t2=0,
∴y1+y2=-$\frac{\frac{2\sqrt{2}t}{k}}{\frac{1}{{k}^{2}}+2}$=$\frac{2\sqrt{2}kt}{1+2{k}^{2}}$,y1y2=-$\frac{2{t}^{2}}{\frac{1}{{k}^{2}}+2}$=-$\frac{2{k}^{2}{t}^{2}}{1+2{k}^{2}}$,
-2y2=-$\frac{2\sqrt{2}kt}{1+2{k}^{2}}$,-3y22=-$\frac{2{k}^{2}{t}^{2}}{1+2{k}^{2}}$,
解得:k=1.
故答案:1.

點評 本題考查橢圓的標準方程及簡單幾何性質,考查直線與橢圓的位置關系,韋達定理及向量的坐標運算,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,則直線的斜率為(  )
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$±\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求函數(shù)f(x)=sin2x-2acosx-1的最大值g(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象分別向左平移m(m>0)個單位、向右平移n(n>0)個單位,所得到的圖象都與函數(shù)y=cos2x的圖象重合,則m+n的最小值為π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.三棱錐V-ABC中,VA=VB=AC=BC=2,AB=2$\sqrt{3}$,VC=1,E為AB邊中點.
(1)求證:AB⊥平面VEC;
(2)求出二面角V-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知拋物線x2=4y,圓C:x2+(y-2)2=4,點M(x0,y0),(x0>0,y0>4)為拋物線上的動點,過點M的圓C的兩切線,設其斜率分別為k1,k2
(Ⅰ)求證:k1+k2=$\frac{2{x}_{0}({y}_{0}-2)}{{{x}_{0}}^{2}-4}$,k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$.
(Ⅱ)求過點M的圓的兩切線與x軸圍成的三角形面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知定義在R上的奇函數(shù)f(x),當x≥0時,f(x)=$\left\{\begin{array}{l}{log_2}(x+1),{\;}_{\;}x∈[0,1]\\|x-3|-1,{\;}_{\;}x∈(1,+∞)\end{array}$,則關于x的方程f(x)=a,(0<a<1)的所有根之和為( 。
A.2a-1B.2a+1C.1-2-aD.1+2-a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.?x∈[1,3]使a+x+$\frac{1}{x}$>0,則a的取值范圍為(-$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)設復數(shù)z滿足|z|=5,且(3+4i)z是純虛數(shù),求z.
(2)已知m>0,a,b∈R,求證:($\frac{a+mb}{1+m}$)2≤$\frac{{a}^{2}+m^{2}}{1+m}$.

查看答案和解析>>

同步練習冊答案