A. | 4π | B. | 8π | C. | 12π | D. | $\frac{32π}{3}$ |
分析 根據(jù)題意判斷直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,我們可以把直三棱柱ABC-A1B1C1補成正四棱柱,則正四棱柱的體對角線是其外接球的直徑,求出外接球的直徑后,代入外接球的表面積公式,即可求出該三棱柱的外接球的表面積
解答 解:∵在直三棱錐ABC-A1B1C1中,AB⊥CB1,AB=BC=2,AA1=2,
∴AB⊥面BCC1B1,
即AB⊥BC
∴直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,
把直三棱柱ABC-A1B1C1補成正四棱柱,
則正四棱柱的體對角線是其外接球的直徑,
設D,D1分別為AC,A1C1的中點,則DD1的中點O為球心,球的半徑$R=\sqrt{C{D^2}+O{D^2}}=\sqrt{3}$,故表面積為S=4πR2=12π.
故選:C.
點評 在求一個幾何體的外接球表面積(或體積)時,關鍵是求出外接球的半徑,我們通常有如下辦法:①構造三角形,解三角形求出R;②找出幾何體上到各頂點距離相等的點,即球心,進而求出R;③將幾何體補成一個長方體,其對角線即為球的直徑,進而求出R
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{14}{3}$ | B. | $\frac{19}{3}$ | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{5}{9}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (ρ,π+θ) | B. | (ρ,-θ) | C. | (ρ,π-θ) | D. | (ρ,2π-θ) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com