分析 (1)設(shè)AB與x軸交于點(diǎn)R,求出|AR|,|CR|,即可求拋物線E的方程;
(2)求出圓D,C的方程,兩圓相減,可得直線PQ的方程,利用直線PQ經(jīng)過點(diǎn)O,即可求點(diǎn)N的坐標(biāo)及|PQ|長(zhǎng)度.
解答 解:(1)由已知得M(-$\frac{p}{2}$,0),C(2,0).
設(shè)AB與x軸交于點(diǎn)R,
由圓的對(duì)稱性可知,|AR|=$\frac{2\sqrt{2}}{3}$.
于是|CR|=$\frac{1}{3}$
所以|CM|=$\frac{|AC|}{sin∠AMC}$=$\frac{|AC|}{sin∠CAR}$=3,
即2+$\frac{p}{2}$=3,p=2.
故拋物線E的方程為y2=4x.
(2)設(shè)N(s,t).
P,Q是NC為直徑的圓D與圓C的兩交點(diǎn).
圓D方程為(x-$\frac{s+2}{2}$)2+(y-$\frac{t}{2}$)2=$\frac{(s-2)^{2}+{t}^{2}}{4}$,
即x2+y2-(s+2)x-ty+2s=0.①
又圓C方程為x2+y2-4x+3=0.②
②-①得(s-2)x+ty+3-2s=0.③
P,Q兩點(diǎn)坐標(biāo)是方程①和②的解,也是方程③的解,從而③為直線PQ的方程.
因?yàn)橹本PQ經(jīng)過點(diǎn)O,所以3-2s=0,s=$\frac{3}{2}$.
故點(diǎn)N坐標(biāo)為($\frac{3}{2}$,$±\sqrt{6}$),
PQ的方程為-$\frac{1}{2}$x$±\sqrt{6}$y=0,|PQ|=$\frac{2\sqrt{21}}{5}$.
點(diǎn)評(píng) 本題考查拋物線的方程,考查圓的方程,考查兩圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,求得PQ的方程是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2a)<f(2)<f(log2a) | B. | f(2)<f(2a)<f(log2a) | C. | f(log2a)<f(2a)<f(2) | D. | f(2)<f(log2a)<f(2a) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$或1 | D. | 2$\sqrt{2}$或$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $2\sqrt{2}$ | D. | $\frac{{5\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com