相關習題
 0  235130  235138  235144  235148  235154  235156  235160  235166  235168  235174  235180  235184  235186  235190  235196  235198  235204  235208  235210  235214  235216  235220  235222  235224  235225  235226  235228  235229  235230  235232  235234  235238  235240  235244  235246  235250  235256  235258  235264  235268  235270  235274  235280  235286  235288  235294  235298  235300  235306  235310  235316  235324  266669 

科目: 來源: 題型:解答題

16.在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2\sqrt{2}cosα\\ y=2sinα\end{array}\right.(α∈R,α$為參數(shù)),曲線C2的極坐標方程為$ρcosθ-\sqrt{2}ρsinθ-5=0$.
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)設P為曲線C1上一點,Q曲線C2上一點,求|PQ|的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知函數(shù)g(x)=xe(2-a)x(a∈R),e為自然對數(shù)的底數(shù).
(1)討論g(x)的單調(diào)性;
(2)若函數(shù)f(x)=lng(x)-ax2的圖象與直線y=m(m∈R)交于A,B兩點,線段AB中點的橫坐標為x0,證明:f'(x0)<0.(f'(x)為函數(shù)f(x)的導函數(shù)).

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,直三棱柱ABC-A1B1C1的底面為正三角形,E、F、G分別是BC、CC1、BB1的中點.
(1)若BC=BB1,求證:BC1⊥平面AEG;
(2)若D為AB中點,∠CA1D=45°,四棱錐C-A1B1BD的體積為$\frac{{\sqrt{6}}}{2}$,求三棱錐F-AEC的表面積.

查看答案和解析>>

科目: 來源: 題型:解答題

13.(1)證明:若實數(shù)a,b,c成等比數(shù)列,n為正整數(shù),則an,bn,cn也成等比數(shù)列;
(2)設z1,z2均為復數(shù),若z1=1+i,z2=2-i,則$|{{z_1}•{z_2}}|=\sqrt{2}×\sqrt{5}=\sqrt{10}$;若z1=3-4i,z2=4+3i,則|z1•z2|=5×5=25;若${z_1}=\frac{1}{2}-\frac{{\sqrt{3}}}{2}$,${z_2}=-\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{2}}}{2}i$,則|z1•z2|=1×1=1.通過這三個小結論,請歸納出一個結論,并加以證明.

查看答案和解析>>

科目: 來源: 題型:填空題

12.若復數(shù)z的共軛復數(shù)$\overline z$滿足$({1+i})•\overline z=3+i$,則復數(shù)z在復平面內(nèi)對應的點位于第一象限.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{m}{x}+lnx$,g(x)=x3+x2-x.
(Ⅰ)若m=3,求f(x)的極值;
(Ⅱ)若對于任意的s,$t∈[{\frac{1}{2}\;,\;\;2}]$,都有$f(s)≥\frac{1}{10}g(t)$,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}為公差不為零的等差數(shù)列,S6=60,且a1,a6,a21成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)若數(shù)列{bn}滿足bn+1-bn=an(n∈N+),且b1=3,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.設函數(shù)f(x)=2cos2ωx-1(ω>0),將y=f(x)的圖象向右平移$\frac{π}{3}$個單位長度后,所得圖象與原圖角重合,則ω的最小值等于(  )
A.1B.3C.6D.9

查看答案和解析>>

科目: 來源: 題型:解答題

8.( I)若直線l:(a+1)x+y+2-a=0(a∈R)的橫截距是縱截距的2倍,求直線l的方程;
( II)過點P(0,3)作直線l與圓C:x2+y2-2x-4y-6=0交于A,B兩點,且OA⊥OB(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知數(shù)列{an}是等差數(shù)列,a1+a2+a3=6,a5=5.
( I)求數(shù)列{an}的通項公式;
( II)若${b_n}={a_n}•{2^{a_n}},(n∈N*)$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案